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A B S T R A C T

Traffic safety analysis at the macroscopic level usually relies on previously defined areal traffic analysis zones
(TAZs) that are used as the units of investigation. Hence, statistical inference is made on the basis of such units,
implying that the consideration of a certain TAZ configuration may influence the results and conclusions
achieved. Regarding this, the modifiable areal unit problem (MAUP) is a well-known issue in the field of spatial
statistics, which refers to the effects that arise in statistical properties and estimations when there is a change in
areal units of analysis.

In this paper, the consequences of MAUP have been investigated through a dataset of traffic crashes that
occurred in Valencia within the years 2014 and 2015 and two common statistical models: a conditional auto-
regressive model and a geographically weighted regression. In the absence of an established TAZ scheme for the
city, four classes of basic spatial units (BSUs) were considered: census tracts, hexagonal units and two types with
construction based on the structure of main roads and intersections of the city. Each of these BSU types was
specified at different levels of spatial aggregation. The main research objective was to investigate the final effects
that changes in BSU type and scale have on model parameter estimations, but also the specific alterations that
MAUP causes to data in terms of the distributional characteristics of the response, multicollinearity among the
covariates and covariates’ spatial autocorrelation.

The results showed the presence and severity of MAUP for the dataset and area that were analysed. Although
effects from scale variations were more moderate, changing the BSU type affected the results severely. The joint
use of hexagonal units and a conditional autoregressive model achieved the best performance among all the
possibilities explored, but the choice of a proper BSU unit should rely on more factors. Despite MAUP effects,
educational centres showed a consistent (and negative) association with traffic crashes, a fact possibly related to
their distribution across the whole city. Other covariates revealed a positive correlation with crash counts, but
these findings were more uncertain given the discrepancies found at different scales and zonings.

1. Introduction

1.1. The modifiable areal unit problem

Traffic safety analysis at the macroscopic level requires the defini-
tion of a basic spatial unit (BSU) for performing the analysis. Hence, the
whole area of investigation needs to be covered by BSUs that allow
researchers to analyse the incidence and causality of traffic crashes
across it. The definition of BSUs can be done both manually, through
the advice of experts of the field, or automatically on the basis of an
algorithm specifically designed for BSU delineation.

The choice of a certain BSU over an area of interest is closely related
to the well-known modifiable areal unit problem (MAUP). MAUP refers
to the effects that carries the change from a collection of BSUs to an-
other with regard to statistical inference and interpretation (Openshaw,
1984). In a seminal paper, Openshaw (1977) presented the two main
factors that need to be addressed for the delineation of an area into
BSUs: scale and zoning. Scale, or aggregation level, refers to the number
of zones in which the whole area of study is subdivided for performing
the analysis. Hence, given a scale, zoning is the way the BSUs are joined
forming the zones of analysis while preserving the specified scale.
Openshaw (1977) proved that the election of the zones has an effect on
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spatial interaction models, in terms of fitting and parameter estimates.
For this reason, he proposed a methodology in order to find the zoning
subdivision of the area of analysis that optimizes model performance.
More specifically, Openshaw also studied the consequences of MAUP on
linear regression (Openshaw, 1978) and correlation coefficients
(Openshaw, 1979), although he recognized that there are high diffi-
culties for assessing the problem theoretically, leaving simulation stu-
dies as the main tool available for its approach.

Years later, Fotheringham and Wong (1991) extended the ex-
amination of MAUP to multivariate statistical analysis, considering
multiple linear regression and multiple logistic regression within the
context of two classical administrative divisions: block groups and
census tracts. The aggregation of both divisions at different scales al-
lowed observing that MAUP was capable of creating a severe instability
in parameter estimates when the zoning or, more remarkably, the scale
were modified. These authors found that the interpretation of some of
the variables included in the models could be dramatically altered due
to MAUP, as changes in the signs of the parameter estimates were ap-
preciated. In addition, goodness of fit was observed to grow mono-
tonically as aggregation level got increased.

Despite the fact that the study of the MAUP and its consequences in
statistical inference have mainly been of descriptive or exploratory
nature, recent works are trying to fill this gap by providing more ac-
curate measurements of MAUP effects. Remarkably, Duque et al. (2018)
have proposed a nonparametric test, S-maup, that measures the sensi-
tivity to MAUP of a spatially intensive variable. Therefore, the S-maup
test can be used to determine the level of aggregation at which MAUP
effects do not impact the statistical analysis severely. As a drawback,
the S-maup test lacks a theoretical definition. Indeed, an extensive si-
mulation procedure was implemented by the authors in order to be able
to supply critical values for different levels of scale and autocorrelation
for the spatial variable. In a more observational work, Lee et al. (2018)
have investigated the effects of MAUP in means, variances and Moran
coefficients, considering several scales and levels of autocorrelation for
the variables involved. They have concluded that MAUP effects are not
strong on means, unless a very high spatial autocorrelation is present,
and that higher levels of aggregation tend to decrease the variance.

1.2. TAZ delineation and MAUP effects in traffic safety analysis

The convenient delineation of an area into traffic analysis zones
(TAZs), which behave as BSUs from the perspective of the present re-
search, requires several considerations to be made, although the
guidelines suggested in literature are usually varied and even contra-
dictory. In a pioneering work, O’Neill (1991) proposed six criteria for
the delineation of TAZs, including the homogeneity of socioeconomic
characteristics, population and trip attraction levels, the minimization
of intrazonal trips and the employment of physical, historical or ad-
ministrative boundaries. Martínez et al. (2009) made use of a mobility
survey available for the city of Lisbon (Portugal) in order to design
TAZs fitting the following four criteria: boundaries are set over roads
presenting a low trip generation density, intra-TAZ trips are minimized,
TAZs with a very low or large number of trips are avoided and homo-
geneity within a TAZ is pursued as much as possible. Dong et al. (2015)
used a K-means algorithm to classify a predefined set of cell areas ac-
cording to primary features (traffic volume, hourly inflow, outflow and
incremental flow) and optimizing features (peak and valley values for
the primary features).

Efforts have also been made in order to account for the boundary
effect in TAZ delineation. Siddiqui and Abdel-Aty (2012) proposed the
distinction between boundary and interior pedestrian crashes con-
sidering a buffer of 100 ft from TAZs boundaries. Covariate information
was weighted in the case of boundary crashes depending on the length
of shared boundary between contiguous TAZs. Then, the specification
of two analogous models for both types of crashes allowed the detection
of differential effects for some of the covariates included in the study.

Furthermore, there exists some simple methods that allow the alloca-
tion of traffic crashes occurred near TAZ boundaries, including half-
and-half ratio, one-to-one ratio and ratio of exposure. Very recently,
Zhai et al. (2018a) proposed a novel model-based iterative method for
assigning crashes located close to boundaries. This was proven to pro-
duce better predictions at the BSU level than the other boundary as-
signation methods and to increase the number of significant covariates
detected.

Several authors have investigated MAUP in the context of traffic
safety analysis, which are now briefly discussed. First, Thomas (1996)
noted that changes in scale may alter the probability distribution that
best fits the nature of the available crash counts. Indeed, Thomas
(1996) worked at the road segment level in order to infer three length
thresholds that would require a distinct modelling strategy for crash
counts: a Poisson distribution for very short segments (less than 1 hm),
an intermediate empirical distribution for middle segments and a
normal distribution for long segments (more than 20 hm).

In the last decade, however, most of the research studies related to
MAUP were settled in the context of areal units of analysis. For in-
stance, Lee et al. (2014) took the more than 1000 TAZs already defined
for several counties in Central Florida (USA) and combined them into
new subdivisions of the space containing from 100 to 1000 TAZs (in
intervals of 100 TAZs). Specifically, total crash rates available for the
period of study were employed by the regionalization algorithm for the
obtention of sets of homogeneous zones containing the different
number of TAZs specified. The Brown-Forsythe test was applied in
order to check how the changes in TAZs affected the variance of crash
rates. A moderate value of this test with a certain TAZ system represents
an optimal situation, which means that the scale at which the TAZs are
defined is suitable for detecting both local and global variation. Thus,
the definition of 500–700 TAZs was found optimal for the data analysed
in Lee et al. (2014). Xu et al. (2014) tested different TAZ schemes in-
cluding from 50 to 738 units of analysis. They suggested the use of 350
or more TAZs (for their case study) in order to reduce MAUP effects
because for this scale they found a superior number of significant
covariates and more stable coefficient estimations. Similarly, Ukkusuri
et al. (2012), used ZIP codes and census tracts as TAZs, determined that
a finer aggregation level (census tracts in their study) was more suitable
for data modelling as it enables a higher data variability and greater
explanatory power. Abdel-Aty et al. (2013) modelled crash counts oc-
curred at two American counties at the level of TAZs, block groups and
census tracts, considering total, severe and pedestrian crashes. Relevant
differences were found in terms of the number of significant variables
that were yielded by models based on different spatial units and, more
specifically, in the type of factor (roadway related vs. commute related)
providing more significant variables. Amoh-Gyimah et al. (2017) in-
vestigated several spatial units that may be used as TAZs, including
statistical area levels, postal areas, state electoral divisions, grid cells
and Thiessen polygons developed around the centroids of Melbourne
Integrated Transport Model. These authors made use of several statis-
tical models to provide a more complete perspective of the effects that
the choice of TAZs can lead to. The presence of MAUP was evident as
they observed that a reduction in the number of zones produced an
increase in the number of significant variables. Furthermore, they
concluded that the selection of the modelling technique is another
important factor that may reduce MAUP. Indeed, geographically
weighted Poisson regression appeared to be less affected by MAUP than
random parameter negative binomial. Finally, these authors suggest the
use of Thiessen-based and grid cells for prediction purposes, according
to their results. Zhai et al. (2018b) applied a multivariate Poisson log-
normal model with multivariate conditional auto-regressive prior on
block groups, census tracts, zip codes and predefined BSUs for the
analysis of traffic crashes occurred in a county of Florida (USA). Im-
portant variations were found in relation to coefficient sign, magnitude
and significance, and the larger units showed a superior forecasting
performance. In addition, the detection of high-crash locations revealed
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some unexpected situations, as certain zones that were shared by all the
BSU configurations showed a completely opposite behaviour depending
on the underlying BSU-dependent model being used for such assess-
ment.

Finally, in a review paper regarding the effects of MAUP in traffic
safety analysis, Xu et al. (2018) proposed four potential solutions:
avoiding data aggregation, considering the spatial variation of the
covariates employed for data modelling (an issue that is usually
skipped), defining an optimal zoning system for the analysis and con-
ducting sensitivity analyses in order to check for MAUP presence and
magnitude, regardless of the strategies undertaken for attempting its
reduction.

In this paper, we carry out a complete investigation of MAUP effects
from a dataset of traffic crashes occurred in Valencia (Spain). Whereas
some related papers in the field have only focused on scale (Lee et al.,
2014; Xu et al., 2014), most of them have tested different zonings
without controlling the scale factor explicitly. This fact makes it chal-
lenging to determine if MAUP effects are a consequence of scale, zoning
or the interaction between the two. Our paper tries to fill this gap with a
simultaneous investigation of several BSUs and aggregation levels that
allow the distinction between scale and zoning effects, in seeking to
provide a more complete depiction of the phenomenon. Two modelling
approaches, conditional autoregressive models and geographically
weighted regressions have been used for this objective, following the
choices of similar papers. Furthermore, we have specifically in-
vestigated how the changes in scale or zoning affect several questions
involved in any macroscopic statistical modelling. These include the
spatial autocorrelation of the covariates, multicollinearity among cov-
ariates and the basic distributional characteristics of the response
variable. The investigation of MAUP usually focuses on the changes that
finally arise in the estimation of model parameters after a switch of
scale or zoning, but the changes in the underlying characteristics of the
data being modelled are frequently overlooked. We also try to provide
more insights on this issue.

2. Data

2.1. Crash dataset and road structure characteristics

A total of 18,037 traffic crashes that took place in the city of
Valencia (Spain) during the years 2014 and 2015 were analysed
(Fig. 1a). Geographical coordinates for each of these crashes and in-
formation regarding the date and hour of occurrence were provided by
the Local Police of Valencia. The available coordinates were used to
locate the crashes on a spatial representation of the road network of the
city (linear network), as a guarantee of accuracy. This road network has
a length of 840.3 km (with a diameter of almost 11.6 km) and contains
6110 road intersections. Arterial roads of Valencia, which were

employed to define BSUs, extend up to 168.3 km and are also displayed
in Fig. 1a.

2.2. Covariate definition

Several covariates were constructed to explain the incidence of
traffic crashes among BSUs for the years of study, which were classified
into environmental, network-related and socioeconomic.
Environmental covariates included the consideration of different ser-
vices (public or private) that are located along the road network which
are known to influence the dynamics of traffic flow and in consequence
are likely to affect crash rates. The services selected were schools (from
preschool to high school level), bars/restaurants, hotels, private com-
panies (mainly financial, legal or insurance), bus and tram stops.

Network-related covariates were precisely derived from the in-
formation provided by the road network structure, and included non-
pedestrian road length, which was considered as an exposure, average
road betweenness and number of road intersections (involving any road
type, main or not). Betweenness is a measure of network connectivity
and was computed for each road segment of the network according to
the next formula (Freeman, 1977):

∑=
∼

B
σ e

σ
( )

e
i j

ij

ij

where i and j are vertex of the network that are connected by a path
(i∼ j), σij the number of shortest paths between i and j and σij(e) the
number of shortest paths that connect i and j while passing through the
edge e of the network.

Finally, socioeconomic and demographic information was in-
troduced through the percentages of population in the range 16–24 and
over 65 years, and also with the average power of cars (in hp), which
clearly correlates with economic status.

It is of need to highlight that the data that was used to construct this
set of covariates for different zonal schemes and levels of aggregation
was available in point-referenced format. Hence, it was possible to
aggregate the data at any desired level of aggregation or zoning system.
In addition, the availability of the digitized version of the road network
of the city allowed the computation of the betweenness or the number
of road intersections. All these steps were carried out through specific
GIS functions available in the R programming language (R Core Team,
2018) (Table 1).

2.3. BSU definitions

In the absence of an established TAZ configuration for the city of
Valencia (which is probably the most used areal unit in the field of
traffic safety analysis), several possibilities were explored for the

Fig. 1. Points representing the locations of traffic crashes that occurred in Valencia during the years 2014 and 2015 (a) and time series (displayed by hour and
weekday) of traffic crashes observed in Valencia during the same period (b).
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investigation of MAUP effects. The use of census tracts (CTs) of Valencia
and a grid of hexagonal BSUs (HEXAs) are two easy-to-implement op-
tions that were tested. Particularly, CTs have been investigated in many
previous studies (Wier et al., 2009; Abdel-Aty et al., 2013; Cai et al.,
2017). Regarding the use of hexagons, these have been recommended
over square grids in related literature on traffic safety and MAUP given
its more compact shape (Loidl et al., 2016). The scarcity of road net-
work at some areas in the North of Valencia led to join some of the
hexagonal units that were covering them, but these modifications were
minimal in relation to the whole hexagonal grid.

Furthermore, two more specific BSU schemes were delineated on
the basis of two capital elements of any urban traffic network: main
roads (segments) and intersections between main roads (points). It is
known that these two road entities absorb a substantial percentage of
traffic crashes, being the case of road intersections especially treated in
literature (Miaou and Lord, 2003; Huang et al., 2017; Lee et al., 2017).
Thiessen polygons (also known as Voronoi or Dirichlet polygons) were
constructed around points located along main roads of the city and
exactly at main intersections, generating two BSU types that hereinafter
are referred to as TMs (Thiessen polygons based on main roads) and TIs
(Thiessen polygons based on intersections between main roads). Given
a collection of locations in a planar space, the Thiessen polygon built
from one of these locations, P, contains all the points of the space that
are closer to P than to any of the other locations established. Hence,
each of the Thiessen polygons defined as a BSU was associated with a
particular point along the main road structure (in-between a main road)
or to a main intersection of the city. The use of TMs, TIs or HEXAs
clearly alleviates the uncertainties derived from crashes located near
BSU boundaries, which may have a strong effect in the case of CTs given
the historical tendency of defining administrative divisions along main
roads, where many crashes occur (Table 2).

Then, Fig. 2 includes the four types of BSU configurations that were

defined over the region of study, which provide enough evidence of
how the change of the system alters substantially the spatial distribu-
tion of traffic crashes across the city. For instance, the central district of
Valencia includes several CTs and HEXAs where the crash rate belongs
to the highest quintile (Fig. 2a and d), but this effect clearly reduces
when the TMs and TIs are considered (Fig. 2b and c).

The number of CTs in Valencia at the beginning of the year 2015
(566) served as a guide in order to define the other three BSU systems in
a way they presented a comparable scale (similar number of BSUs). In
the case of TIs, the initial scale was conditioned by the number of main
intersections in Valencia, rendering it impossible the implementation of
a finer BSU scheme of this nature, than that presented in Fig. 2c. Thus,
the four baseline configurations in Fig. 2 composed of 566 CTs, 574
TMs, 378 TIs and 515 HEXAs were chosen to analyse the MAUP effect in
the modelling of traffic crash counts for the available dataset.

3. Methodology

3.1. Software

The R programming language (3.5.1 version, R Development Core
Team, Vienna, Austria) (R Core Team, 2018) was used to obtain all the
results presented in this work. The R packages ClustGeo (Chavent et al.,
2017b), ggplot2 (Wickham, 2016), INLA (Rue et al., 2009; Martins et al.,
2013; Lindgren and Rue, 2015), rgeos (Bivand and Rundel, 2018),
spatstat (Baddeley et al., 2015), spded (Bivand and Piras, 2015), spgwr
(Bivand and Yu, 2017) and SpNetPrep (Briz-Redón, 2019) were speci-
fically required for performing the analysis.

3.2. Regionalization algorithm

The term regionalization was defined by Guo (2008) as the process
of aggregating a set of spatial entities into a reduced number of regions
in a way that a predefined objective function is optimized. There are
several important regionalization algorithms, including SKATER
(Assunção et al., 2006), REDCAP (Guo, 2008) and ClustGeo (Chavent
et al., 2017b). In this paper the latter was chosen, which is implemented
in the R package ClustGeo (Chavent et al., 2017a). The next paragraphs
contain a brief description of how this method works and how it was
used.

Given a number of clusters, K, to be formed and two matrices, D0

and D1, that represent the homogeneity and physical distances (re-
spectively) between the spatial units available before regionalization,
the ClustGeo algorithm relies on the minimization of a measure called

Table 1
Description of the covariates defined for the analysis and basic statistics of these covariates for the four BSU configurations tested (in their original configuration,
prior to aggregation/regionalization).

Type Variable BSU configuration

CTs TMs TIs HEXAs

Mean SD Mean SD Mean SD Mean SD

Crashes No. of traffic crashes (CRASH) 31.74 36.11 31.29 30.50 47.52 46.52 34.43 35.86

Environmental No. of undergraduate educational centres (EDU) 0.62 0.87 0.61 1.03 0.93 1.29 0.68 1.05
No. of bars/restaurants (BAR) 8.49 9.35 8.37 10.56 12.71 13.97 9.31 13.54
No. of companies (COMP) 29.54 49.66 29.13 34.28 44.23 49.12 32.41 60.72
No. of hotel rooms (HOT) 14.34 71.58 14.14 53.21 21.47 66.85 15.76 63.04
No. of parking zones (PARK) 0.16 0.47 0.16 0.44 0.24 0.62 0.18 0.52
No. of bus stops (BUS) 1.67 2.18 1.64 1.74 2.50 2.39 1.82 1.77
No. of tram stops (TRAM) 0.05 0.30 0.05 0.26 0.08 0.31 0.06 0.25

Traffic-related Average betweenness (BETW) 518.97 1013.62 786.17 2020.76 760.32 1703.99 384.92 853.54
Intersection density per road km (INT) 8.71 6.33 8.61 6.42 9.01 6.78 6.96 5.51

Socioeconomic/demographic % of young (16–24 years) population (YP) 9.87 2.12 9.06 4.43 9.41 3.49 7.96 5.47
% of old (≥65 years) population (OP) 24.02 5.97 23.27 10.12 24.54 11.11 21.74 17.23
Average horsepower of cars (HP) 12.25 0.72 11.78 2.88 12.09 2.13 10.67 4.22

Table 2
Percentage of crashes located near BSU boundaries considering five distance
thresholds (5, 10 and 20m) and mean distance from crashes to BSU boundaries
for the four BSU configurations employed in the analysis.

BSU
configuration

< 5m (%) <10m (%) < 20m (%) Mean distance
(m)

CTs 35.36 45.29 59.56 27.99
TMs 8.75 18.32 30.23 48.77
TIs 6.65 11.54 22.73 64.78
HEXAs 5.83 11.91 22.40 52.19
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mixed within-cluster inertia, defined as the sum of the mixed inertias of
all of the clusters established. The mixed inertia of a cluster, Ck

α, follows
the next expression (Chavent et al., 2017b):

∑ ∑ ∑ ∑= − +
∈ ∈ ∈ ∈

I C α
w w

μ
d α

w w
μ

d( ) (1 )
2 2α k

α

i C j C

i j

k
α

i C j C

i j

k
α0,ij

2
1,ij
2

k
α

k
α

k
α

k
α

where α∈ [0, 1] is a parameter that controls the importance that the
homogeneity and physical distances (represented by D0 and D1) have in
the clustering procedure, k∈ {1, …, K} is the index for the cluster, wi is
the weight of spatial unit i, = ∑ ∈μ wk

α
i C i

k
α and d0,ij (resp. d1,ij) is the

normalized dissimilarity between spatial units i and j in D0 (resp. D1).
In our paper, the total number of crash counts registered per BSU

during the period 2014–2015 at four time slots (23h–7h, 7h–14h,
14h–20h and 20h–23h, which were selected according to the daily
trends observable in Fig. 1b) and at the weekends were used to define
the dissimilarity matrix D0. Regarding D1, this matrix was constructed
from the Euclidean distances between the centroids of the BSUs. Fur-
thermore, the weights (wi) were set equal for all BSUs and a value of
α=0.1 was chosen, giving much importance to the spatial distances
between the BSUs during the aggregation procedure (the investigation
of the optimal value of α suggested by ClustGeo led to this choice).

It needs to be remarked that there is a technical difference between
SKATER and REDCAP algorithms and the method implemented in
ClustGeo. Indeed, the choice of K in ClustGeo does not represent the
number of contiguous and homogeneous regions that are created, but
the number of homogeneous regions (according to the variables pro-
vided to the algorithm) that need to be regrouped later in order to fully
satisfy the contiguity constraints. Hence, the input K in ClustGeo is a
lower bound of the number of BSUs that are generated at the end of the
process, although both values barely differ. The use of several values of
K, from 100 to 500 in intervals of 100, allowed MAUP to be investigated

in the present study with five different levels of spatial aggregation,
which are denoted by AG100, AG200, AG300, AG400 and AG500
within the rest of the paper.

3.3. Crash counts modelling

3.3.1. Conditional autoregressive model
The modelling of crash counts at the macroscopic level requires the

consideration of data overdispersion. Two common choices in the field
of traffic safety analysis to address this issue are negative binomial (also
known as Poisson–Gamma) and Poisson lognormal probability dis-
tributions (Lord and Mannering, 2010). Both have their own ad-
vantages and disadvantages, Poisson lognormal being more re-
commended in cases of high overdispersion (particularly skewed
distribution of the counts), whereas negative binomial has been sug-
gested to be more suitable for moderately overdispersed counts, and
also for counts with a large number of zeros (Khazraee et al., 2018;
Shirazi and Lord, 2018). In the context of this study, it is hard to choose
between one distribution or the other, as the change in scale or zoning
alters the statistical properties that are involved in our decision.
Anyhow, as the crash counts available under the different combinations
of aggregation level and BSU type were overall only moderately over-
dispersed, we decided to select the negative binomial modelling ap-
proach.

Therefore, a conditional autoregressive (CAR) model with negative
binomial (NB) response was chosen to fit the crash counts recorded for
each BSU. The use of a CAR structure for modelling crash counts is a
usual strategy in traffic safety analysis to account for spatial hetero-
geneity (Quddus, 2008; Huang et al., 2010).

If Y∼NB(μ, ψ) (basic NB distribution of mean μ and shape ψ) then it
holds that E(Y)= μ, = +V Y μ( ) μ

ψ

2
and P

Fig. 2. Crash counts (CRASH) in Valencia considering a BSU configuration composed of CTs (a), TMs (b), TIs (c) and HEXAs (d). Districts of Valencia are overlayed
(thicker lines, in black) for better readability and comparison.
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1 . Then, assuming a NB distribution for
the response (crash counts) the following spatial model was im-
plemented:

∑
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where Yi is the number of crashes observed at BSU i, μi and ψ are, re-
spectively, the mean risk (for BSU i) and overdispersion (1/ψ) values for
the NB distribution, the natural logarithm acts as a link function for μi,
Ei (exposure at BSU i) is the length of non-pedestrian road at BSU i
which acts as an offset of the equation, Xim represents the value of the
mth covariate at BSU i, βm is the coefficient that controls the effect of
the mth covariate and ϕi represents a spatial effect for BSU i. Regarding
the selection of the exposure, the unavailability of vehicle miles tra-
velled data (traffic volume) for non-main roads of Valencia left non-
pedestrian road length as the natural choice, a possibility already
considered in previous research studies (Qin et al., 2004; Imprialou
et al., 2016).

The spatial effect in Eq. (1) was modelled using the following CAR
structure (Besag, 1974; Besag et al., 1991):

∑∣ ≠ ∼
⎛

⎝
⎜

⎞

⎠
⎟

=

−ϕ ϕ j i N w ϕ τ, ,i j
j

n

j i
1

ij
1

where wij is an indicator parameter that is 1 if BSUs i and j are con-
tiguous and 0 otherwise, and τi is a precision parameter that varies with
BSU i.

3.3.2. Geographically weighted regression
Geographically weighted regression (GWR) is a form of linear re-

gression that captures the spatial heterogeneity present in the data by
allowing model parameters to vary locally (Brunsdon et al., 1996;
Fotheringham et al., 2002; Nakaya et al., 2005). GWR has already been
used in traffic safety analysis (Hadayeghi et al., 2010; Matkan et al.,
2011; Xu and Huang, 2015; Gomes et al., 2017), including some ana-
lyses from the perspective of MAUP effects (Amoh-Gyimah et al., 2017).

The mathematical expression that corresponds to the GWR model is
the following:

∑= + +
=

μ E β β Xlog( ) log( ) (BSU) (BSU)i i i
m

p

m i0
1

im
(2)

where μi, Ei and Xim are as in Eq. (1). The main feature of GWR is the
consideration of local regression parameters (in contrast to global
parameters of Eq. (1)) which are denoted by βm(BSUi) in Eq. (2). As in
Eq. (1), a NB distribution was used in the definition of the model to
consider overdispersion. A modification of GWR called semiparametric
GWR consisting in the combination of fixed and spatially-varying ef-
fects for the covariates involved in the model has also been used in
traffic safety analysis (Xu and Huang, 2015; Amoh-Gyimah et al.,
2017). However, we decided to stay with the classical version of the
GWR model in order to provide a more unified framework for the
comparison of the set of models obtained for each aggregation level and
zoning, which is the main purpose of this work.

Hence, a GWR model behaves similarly to a generalized linear
model (GLM), although for the former the parameters that compose the
model are estimated locally, at each BSU, depending on the crash
counts and covariate values at the surrounding areal units. The influ-
ence that BSU i produces on another BSU j (denoted as wij) was con-
trolled by the following Gaussian kernel function:

= −w e d σ
ij

0.5( / )ij
2 2

where dij is the Euclidean distance between BSU i and BSU j (between
their centroids) and σ is the fixed bandwidth employed by the kernel
function, which represents the level of influence that the rest of BSUs

have on a given BSU with regard to model fitting (a higher value for σ
means that model parameters are estimated on the basis of a wider zone
around each BSU). Several other kernel functions are available instead
of the Gaussian (bisquare, for instance), but this choice is usually not
responsible of strong effects on the results (Silverman, 2018).

Regarding the bandwidth, a value of σ=2 km was chosen in this
study for all the BSUs and aggregation levels being considered. Other
authors opted for the choice of a specific optimal bandwidth for each
BSU and aggregation level (Amoh-Gyimah et al., 2017), but here a fixed
value was used in order to avoid the presence of a source of variation
other than scale or zoning, which are the focus of the analysis. The
value of 2 km was chosen because it was close to the optimal values that
were observed for the different BSUs and aggregation levels tested.

3.4. Assessment of model performance

The goodness of fit of the CAR models was assessed through
Bayesian deviance information criterion (DIC) (Spiegelhalter et al.,
2002). Similarly, AIC was used for GWR models. In addition, several
measurements of model performance typically used in other traffic
safety analysis papers on the MAUP for model comparison were con-
sidered for both CAR and GWR models: mean absolute deviation (MAD)
(Lee et al., 2014; Xu et al., 2014; Amoh-Gyimah et al., 2017; Zhai et al.,
2018b), sum of absolute deviation (SAD) (Lee et al., 2014; Xu et al.,
2018; Zhai et al., 2018b) and percent mean absolute deviation (PMAD)
(Lee et al., 2014; Xu et al., 2018).

The formulas for MAD, SAD and PMAD are the following:
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where n is the number of BSUs and = −e y ŷi i i represents the difference
between the number of crashes observed at BSU i (yi) and the number
fitted by the model (ŷi ).

From the perspective of interpreting the results, a lower value of any
of the aforementioned statistics (DIC, AIC, MAD, SAD or PMAD) in-
dicates a better fit to the available data.

3.5. Statistical tools for covariate exploration

Several statistical tools were used to explore the covariates provided
to the models at different scales and zonings, and hence provide more
instruments to analyse their sensitivity to the MAUP. This section in-
cludes a brief description of these tools.

Average nearest neighbour index (NNI) measures the level of clus-
tering/dispersion of a point pattern. Hence, it is suitable for the ex-
ploration of a covariate constructed from a pattern of points located
across the area of investigation (EDU, BAR, COMP, HOT, PARK, BUS
and TRAM among the set of covariates used in the present research).
The definition of NNI is the following (Clark and Evans, 1954; Cressie,
1993):

=
∑ =P D i

A P
NNI

(1/ ) ( )

(1/2) /
i
P

1 NN

where P is the number of points that form the pattern, A is the area of
the whole space where the pattern lies and DNN(i) is the distance from
point i to its nearest neighbour (the closest point to i in the pattern). The
NNI represents a ratio between the average nearest-neighbour distance
observed for the pattern and the value that would be expected under
the hypothesis of random spatial distribution. A NNI lower than 1
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indicates that the pattern is clustered, whereas a value higher than 1 is a
sign of the dispersion of the pattern.

Moran's I (Moran, 1950a,b) was computed for every combination of
BSU, aggregation level and covariate available. Moran's I is defined as
follows:

=
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n x x x x
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where xi is the value of a covariate at BSU i and x̄ the mean value of the
covariate across all spatial units available. Moran's I behaves as a spatial
autocorrelation coefficient for areal-based data. Under the hypothesis of
no spatial autocorrelation, it holds that E(I)=−1/(n− 1), where n is
the number of spatial units in each case. A higher Moran's I value in-
dicates a higher tendency of the covariate to show strongly associated
values for neighbouring BSUs.

Multicollinearity among the covariates considered was investigated
through the variance inflation factor (VIF) (Fox, 1991), which is de-
fined as follows for a given covariate or predictor, Xj:

=
− R

VIF 1
1j

j
2

where Rj
2 is the R2 found when regressing all other covariates onto Xj

(Miles, 2014). A higher value of VIF suggests that the covariate is more
susceptible to lead to multicollinearity issues. A value of VIF not greater
than 10 is usually interpreted in literature as a sign of no severe mul-
ticollinearity (Miles, 2014).

4. Results and discussion

Tables 58 include the parameters estimated for the CAR models
considering each BSU configuration and aggregation level. On the other
hand, Figs. 6–9 display the densities (distributions) of the local para-
meter estimates obtained from the GWR models for each BSU type,
aggregation level and covariate. The distributions of these local para-
meters were scaled (divided by their standard deviation) to facilitate
the graphical comparison.

The main conclusion that yields from all these results is that MAUP
effects have heavily affected the macroscopic traffic safety analysis
performed. In the present section, an initial subsection gives insights
into the varying nature of the data (response and covariates) as one
changes scale or zoning. The subsequent subsections contain a de-
scription of how the variations in aggregation level (scale) or BSU type
(zoning) changed model parameter estimates and a performance com-
parison of all the models implemented. After that, the associations
derived from all the models and BSU configurations tested are globally
evaluated in pursuit of more solid conclusions (despite the con-
sequences of MAUP) that allow the identification of some factors that
correlate with more traffic crashes.

4.1. Effects of MAUP on input data

Before analysing scale and zoning effects on parameter estimations
considering both CAR and GWR models, an investigation of the con-
sequences of MAUP on the input data that is afterwards modelled (re-
sponse and covariates) was performed.

The distributional characteristics of the response (crash counts) for
different BSUs and aggregation levels are shown in Table 4, from which
it yields that overdispersion (through the coefficient of variation) and
kurtosis reduced as the level of aggregation was increased. Further-
more, it can also be observed in Table 4 that the percentage of zeros was
almost negligible for most of the combinations between a BSU and an
aggregation level, excluding the HEXAs.

The magnitude of the spatial autocorrelation shown by the response
variable and the covariates also suffers from scale and zoning changes.
Fig. 3 displays all Moran's I indexes computed for each combination of a

BSU and aggregation level, which suggests that it is hard to predict the
level of spatial autocorrelation after a change of scale. Indeed, some
covariates tend to be more spatially autocorrelated as aggregation in-
creases (the number of parking zones, for TMs), whereas other cov-
ariates show the opposite behaviour (the number of companies, for
HEXAs). In addition, CTs and HEXAs show overall higher levels of
spatial autocorrelation for the covariates than TMs and TIs. This is re-
markable for traffic crashes, which display a particularly high spatial
autocorrelation in the case of HEXAs, rather than in the other three
BSUs considered for investigation. The spatial autocorrelation of some
of the covariates is more deeply discussed in the following subsections.

Finally, the computation of variance inflation factors (VIF) leads to
the conclusion that multicollinearity issues were not present for the
distinct dataset analysed (at different scales and zonings), as VIF factors
were always below 10 (Fig. 4). However, it is important to appreciate
that VIF consistently increased as the level of aggregation increased,
specially for some covariates such as the number of bars/restaurants
(BAR), the number of companies (COMP) and intersection density
(INT). Hence, our analysis suggests that the level of aggregation should
not be excessively increased in order to avoid multicollinearity among
the covariates.

4.2. Parameter variations across aggregation levels

Given the moderate level of significance achieved by the set of
covariates, an 80% credibility level was also considered along with the
most usual 90% level for the estimations yielded by the CAR models.
Fig. 5 displays a graphical summary of the significance achieved by all
the covariates involved in the analysis. According to Fig. 5, the hy-
pothesis of obtaining more significant variables and the consequent
higher interpretation power at lower levels of aggregation suggested by
Xu et al. (2014) was true in the case of CTs, but it was not clear, at all,
for the rest of BSU configurations. Anyhow, this question could have
been better addressed in the presence of a higher number of significant
covariates.

The level of aggregation applied to each BSU configuration through
the regionalization algorithm produced moderate-to-severe effects in
parameter estimates for the CAR models. Hence, although the para-
meter estimates evolved moderately with changes in the scale (Tables
5–8), several covariates were only significant at some of the aggrega-
tion levels tested. However, some of the covariates did not seem af-
fected by MAUP and remained significant with each aggregation level
(old population percentage and average horsepower for CTs, and
number of educational centres and average horsepower for both TMs
and TIs). Despite not being significant for the most aggregated scheme
considered (AG100), the positive association between traffic crashes
and the number of bus stops for HEXAs was also consistent. Re-
markably, none of the covariates that were found significant (at 80% of
credibility) experimented a change of effect (from positive to negative,
or vice versa) after a shift in the scale. This is a positive result, since it
indicates that MAUP effects were not the strongest possible across ag-
gregation levels.

Regarding the GWR models, Figs. 6–9 show that local parameter
distributions may vary acutely after some changes on the aggregation
level. It is hard to assess if the distribution of the local parameters tends
to be more concentrated (leptokurtic) or flat (platykurtic) as the level of
aggregation increases/decreases, as this seems strongly dependent on
the covariate and the BSU. Furthermore, the contradictory presence of
local parameters of opposite signs that takes place for most of the
covariates is a well-known issue that often arises in GWR models
(Hadayeghi et al., 2010; Xu and Huang, 2015; Amoh-Gyimah et al.,
2017). Fig. 10 shows the behaviour of the local parameter estimates
obtained from the GWR models through the signs of 5th, 10th, 20th,
80th, 90th and 95th percentiles. Hence, a negative value for 80th, 90th
or 95th percentiles indicates a high agreement among the local GWR
coefficients and a negative association of the covariate with crash
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counts. Analogously, a positive 5th, 10th or 20th percentiles means the
same but for a positive association.

In contrast to CAR models, for which no covariate showed a sig-
nificant change of effect after a variation in scale, the GWR models
experimented this issue for the covariates representing the number of
companies (COMP), parking zones (PARK) and intersection density
(INT) when using CTs (considering the percentile-based criteria that has
been employed for assessing the association between crash counts and
covariates with the GWR models). This lack of coherence was

specifically serious for the number of companies, a covariate that
showed a strong autocorrelation according to Moran's I at this BSU
system (Fig. 3). The exploration of crash counts and the number of
companies (COMP) at AG100, AG300 and AG500 (Fig. 12) unveils some
singular patterns around the city centre (some surrounding Districts are
highlighted in blue in Fig. 12). Thus, whereas at AG100 most of the
BSUs presenting a high number of companies were located within these
Districts, the use of a more disaggregated configuration provided
greater variation in the number of companies across the whole city,

Fig. 3. Moran's I values for the response (CRASH) and the covariates for each BSU type and aggregation level tested.

Fig. 4. Assessment of multicollinearity among the covariates through variance inflation factor (VIF) for each BSU type and aggregation level tested.
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with many more BSUs in the periphery of Valencia presenting high
values. With regard to intersection density (INT), this covariate also
presented high Moran's I values (Fig. 3), but visual inspection was far
less clear than in the case of the number of companies, becoming
challenging to figure out how the effect of intersections changed from
AG300 to AG400 and again from AG400 to AG500 (for CTs and the
GWR models). On the other hand, it is remarkable how the number of
educational centres (EDU), which presents the more coherent

behaviour across BSUs and aggregation levels in the case of the GWR
models, is one of the covariates that showed a lower range of values for
Moran's I statistic. Similarly, this result also agrees with that provided
by the NNI (Table 3), as some of the covariates based on point patterns
lying over the city presenting a high level of clustering (companies,
NNI= 0.26) display a more sensitive to MAUP behaviour than other
that, albeit clustered, show a more regular pattern (educational centres,
NNI= 0.86). A similar level of consistence to that found for the

Fig. 5. Summary of the results obtained for the CAR models, considering the four types of BSUs and the levels of aggregation that were applied.

Fig. 6. Combined graph showing the distributions of local parameter estimates, for the covariates used in the GWR models (in rows) and each level of spatial
aggregation (in columns) tested for the CTs.
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educational centres was also obtained for the number of tram stops
(TRAM) in the case of the GWR models, although this covariate resulted
non-significant for almost all combinations of aggregation level and
BSU for the CAR models. The NNI of the point pattern formed by the
tram stops was 1.30 (Table 3), clearly indicating the dispersed config-
uration of these stops across Valencia.

4.3. Parameter variations across BSU types

Contrary to scale, MAUP effects from zoning variations were by far
more severe in this case study. Indeed, some covariates showed a sig-
nificant and opposite effect depending on the BSU system being con-
sidered, including old population percentage, the number of bus stops
and intersection density (Fig. 5). The cases of both the number of bus

Fig. 7. Combined graph showing the distributions of local parameter estimates, for the covariates used in the GWR models (in rows) and each level of spatial
aggregation (in columns) tested for the TMs.

Fig. 8. Combined graph showing the distributions of local parameter estimates, for the covariates used in the GWR models (in rows) and each level of spatial
aggregation (in columns) tested for the TIs.
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stops and intersection density were specifically related to the differ-
ential behaviour exhibited by the highest aggregation level, AG100.
This aggregation level was clearly the least coherent among all the le-
vels tested, possibly indicating its unsuitability to capture some micro-
variations present in the data. On the other hand, the percentage of old
population (OP) appeared as a highly sensitive-to-MAUP covariate,
standing out from all the ones supplied to the models. Thus, whereas
this covariate showed a clear positive association with traffic crashes

Fig. 9. Combined graph showing the distributions of local parameter estimates, for the covariates used in the GWR models (in rows) and each level of spatial
aggregation (in columns) tested for the HEXAs.

Fig. 10. Summary of the results obtained for the GWR models, considering the four types of BSUs and the levels of aggregation that were applied.

Table 3
Nearest neighbour indexes (NNI) and p-value associated with each index.

EDU BAR COMP HOT PARK BUS TRAM

NNI 0.86 0.51 0.26 0.35 1.08 0.70 1.30
p-value 0.00* 0.00* 0.00* 0.00* 0.15 0.00* 0.00*

* An asterisk indicates the statistical significance of the index (p < 0.05),
which indicates clustering (NNI<1) or dispersion (NNI > 1).
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for CTs and, to a lesser extent, for TIs, it associated with a decrease in
crash counts with HEXA units at the three most aggregated levels. This
contradictory result was investigated through the cartographic re-
presentation of crash counts (CRASH) and the old population covariate
for CTs and HEXAs at AG100, AG200 and AG300 (Fig. 13). In all the
maps available in Fig. 13, the border of a census tract located in the
South of Valencia (which is the largest of the city) is highlighted in
blue. This census tract constitutes a wide area of low population density
and a high percentage of residents with 65 or more years of age (OP). In
addition, the area is not dense in road network, which naturally reduces
the number of traffic crashes. Hence, the use of HEXAs led to a covering
of this census tract with several hexagons of very high percentage of old
population and very low number of crashes, which surely affected the
estimation of the parameter related to this covariate. On the other hand,
the use of CTs summarizes this part of the city in only one area pre-
senting a high percentage of old population and moderate value of
crash counts, which can barely alter model estimations. In conclusion,
the use of covariates that depend on possibly sparse population should
be used with special care, as the choice of the wrong BSU type in such
cases could lead to artefactual associations between the covariate and
crash rates observed.

The differences in local parameter estimates for the GWR models
across the four BSU types is rather evident (Fig. 10). Several covariates

presented a controversial behaviour with a strong dependence to the
BSU system. These discrepancies are more obvious than with the CAR
models given the higher number of covariates that are highlighted with
the specified percentile criteria. Leaving apart the AG100 aggregation
level because it has overall produced more disparate results (reducing
its reliability), there were still some covariates showing inconsistent
associations with crash counts, confirming the consequences of MAUP
in this case study. Furthermore, a global high level of coincidence be-
tween two distributions of local parameter estimates derived from GWR
(at two different scales and/or zonings) does not guarantee, at all, that
the local estimates vary similarly across space, which is clear in view of
the examples shown in Fig. 11.

4.4. Model performance comparisons

Table 9 provides information with regard to model fitting for all the
BSU systems and aggregation levels employed in the study. It is ap-
preciable that CAR models performance improved gradually (decrease
in DIC) as the aggregation increased (reaching the minimums at AG100
for all the BSU systems). Although this is an issue already pointed out
by Fotheringham and Wong (1991), that does not always represent a
real improvement in model quality and interpretation, in our case may
be also the consequence of a weak multicollinearity among the cov-
ariates at AG100 (specially for HEXAs).

On the other hand, for any fixed scale with the exception of AG100,
HEXAs appeared as the optimal choice for the CAR models. Hence, the
use of hexagonal grids would be a reasonable recommendation, al-
though care must be taken with areas of low population density if po-
pulation-related covariates are being used, as shown in the previous
subsection. For the latter, CTs or other administrative division should
be more convenient.

One positive conclusion is the substantial level of agreement shown
by the CAR and GWR models for each BSU system and level of ag-
gregation, as it can be observed from the comparison of Figs. 5 and 10 .
However, GWR models showed superior values for MAD, SAD and
PMAD for most of the combinations of BSU types and aggregation le-
vels, an opposite result to that found by other authors (Xu and Huang,
2015; Amoh-Gyimah et al., 2017). The use of semiparametric GWR
models or an adaptive version of their kernel's bandwidth may have led
to more close performance results for some combinations of scale and
zoning, but this possibility was discarded to guarantee a fair compar-
ison between models in the context of our analysis, which is more fo-
cused on model parameter estimations rather than on model perfor-
mances.

Table 4
Basic distributional properties of the response variable (crash counts) corre-
sponding to each BSU type and aggregation level, where CV means coefficient
of variation (standard deviation to mean ratio).

BSU AG CV Kurtosis Zeros (%)

CT AG100 0.71 1.77 0.00
CT AG200 0.87 3.41 0.00
CT AG300 0.88 4.71 0.00
CT AG400 0.92 10.86 0.25
CT AG500 1.04 16.07 0.40
TM AG100 0.54 1.76 0.00
TM AG200 0.72 0.59 0.00
TM AG300 0.76 2.11 0.33
TM AG400 0.79 7.07 0.50
TM AG500 0.88 12.03 0.60
TI AG100 0.69 1.65 0.00
TI AG200 0.77 1.49 0.00
TI AG300 0.81 6.77 0.00
HEXA AG100 0.85 2.32 2.68
HEXA AG200 0.83 −0.15 6.50
HEXA AG300 0.88 1.63 7.00
HEXA AG400 0.84 3.75 5.75
HEXA AG500 1.01 4.70 10.00

Table 5
Estimates with standard deviation (SD) for the parameters involved in the CAR model, considering CTs as BSUs.

Covariate AG100 AG200 AG300 AG400 AG500

Est. SD Est. SD Est. SD Est. SD Est. SD

Intercept −13.2477* 2.6119 −11.4619* 1.8909 −8.8597* 1.6753 −8.0273* 1.1308 −8.1816* 1.0403
EDU −0.0327 0.0261 −0.0661* 0.0260 −0.0797* 0.0285 −0.0778* 0.0303 −0.0656* 0.0308
BAR 0.0025 0.0027 0.0030 0.0027 0.0021 0.0033 −0.0017 0.0035 0.0004 0.0042
COMP −0.0005 0.0006 −0.0005 0.0006 0.0000 0.0009 0.0002 0.0009 0.0002 0.0009
HOT 0.0002 0.0004 0.0002 0.0003 0.0003 0.0004 0.0001 0.0004 0.0001 0.0004
PARK −0.0230 0.0657 −0.0970 0.0607 −0.0187 0.0665 0.0102 0.0659 −0.0249 0.0661
BUS 0.0006 0.0134 0.0224* 0.0121 0.0186 0.0141 0.0156 0.0150 0.0222 0.0155
TRAM −0.0436 0.0949 0.0424 0.0763 −0.0065 0.0924 −0.0711 0.0906 −0.0586 0.0911
BETW 0.0001 0.0001 0.0001 0.0001 0.0001 0.0000 0.0001 0.0000 0.0001* 0.0000
INT −0.0130 0.0187 −0.0053 0.0122 −0.0010 0.0093 0.0095 0.0076 0.0051 0.0065
YP −0.0265 0.0523 −0.0019 0.0313 0.0260 0.0245 0.0122 0.0206 0.0170 0.0176
OP 0.0322* 0.0151 0.0156 0.0096 0.0161* 0.0085 0.0120* 0.0072 0.0131* 0.0063
HP 0.7517* 0.2087 0.6004* 0.1487 0.3605* 0.1355 0.3111* 0.0921 0.3169* 0.0842
ψ 3.0831* 0.4127 8.8277* 2.9744 6.5329* 1.8981 5.4961* 1.3313 5.2406* 1.0798

* An asterisk indicates the significance of a parameter with a 90% credibility.
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4.5. Parameter interpretations

Despite MAUP effects, several associations between crash counts
and some of the covariates were observed at several combinations of
aggregation level and BSU type, deserving a deeper analysis. In

particular, the number of undergraduate educational centres showed a
consistent negative correlation with crash counts, whereas average
horsepower of the cars in the BSU generally associated with more traffic
crashes. Other covariates, such as the number of bus stops in the BSU,
the average betweenness of its road segments or the percentage of
population with 65 or more years living in the BSU also suggested the
presence of a positive relationship, but uncertainties from MAUP issues
were stronger for them. The knowledge of the city being analysed
arouses the suspicion that some of these correlations could be related to
a hidden (not included in the models) factor as it is the distance to the
city centre of Valencia (case of average horsepower and old popula-
tion), but this question would require a specific research.

5. Conclusions

This paper is, to the best of our knowledge, the first one that pro-
vides a simultaneous investigation of scale and zoning effects regarding
the modifiable areal unit problem in the context of traffic safety ana-
lysis. Furthermore, another capital objective was to specifically assess
how a change in the aggregation level or BSU type may affect the basic
characteristics of both the response variable being considered (crash
counts) and the set of covariates included in the models. The con-
sequences of MAUP for the data analysed were notorious from the
perspective of both scale and (specially) zoning alterations. Some of the
effects of MAUP were understandable from visual inspection of the
data, as shown through some exemplifications, but it is really tough

Table 6
Estimates with standard deviation (SD) for the parameters involved in the CAR model, considering TMs as BSUs.

Covariate AG100 AG200 AG300 AG400 AG500

Est. SD Est. SD Est. SD Est. SD Est. SD

Intercept −8.3199* 1.2364 −7.7404* 1.0021 −7.2087* 0.7263 −6.7423* 0.6376 −6.0589* 0.5407
EDU −0.0475* 0.0270 −0.0515* 0.0279 −0.0732* 0.0316 −0.0963* 0.0325 −0.0967* 0.0324
BAR 0.0019 0.0026 0.0029 0.0028 −0.0002 0.0034 −0.0016 0.0035 −0.0031 0.0038
COMP −0.0002 0.0006 0.0001 0.0009 −0.0002 0.0010 0.0002 0.0011 −0.0001 0.0013
HOT −0.0001 0.0004 0.0007 0.0005 0.0009 0.0006 0.0008 0.0006 0.0010* 0.0006
PARK −0.0126 0.0594 −0.0397 0.0625 −0.0185 0.0800 −0.0870 0.0799 −0.0357 0.0788
BUS −0.0380* 0.0118 −0.0010 0.0140 −0.0039 0.0163 −0.0086 0.0193 0.0079 0.0208
TRAM −0.1556* 0.0792 0.0021 0.0988 −0.0631 0.1141 −0.1625 0.1170 −0.1163 0.1138
BETW 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
INT −0.0033 0.0164 0.0081 0.0107 0.0115 0.0098 0.0000 0.0075 −0.0006 0.0066
YP 0.0082 0.0398 0.0365 0.0268 0.0042 0.0195 0.0084 0.0165 0.0061 0.0143
OP 0.0339* 0.0122 −0.0039 0.0083 0.0026 0.0059 0.0038 0.0052 0.0021 0.0047
HP 0.3635* 0.0993 0.3028* 0.0755 0.2849* 0.0568 0.2565* 0.0501 0.1996* 0.0428
ψ 3.8533* 0.5287 8.4472* 1.7932 3.1448* 0.5569 2.7796* 0.3599 2.9332* 0.3634

* An asterisk indicates the significance of a parameter with a 90% credibility.

Table 7
Estimates with standard deviation (SD) for the parameters involved in the CAR
model, considering TIs as BSUs.

Covariate AG100 AG200 AG300

Est. SD Est. SD Est. SD

Intercept −6.7825* 1.5880 −6.8832* 0.9019 −6.2381* 0.6777
EDU −0.0399 0.0281 −0.0633* 0.0330 −0.0580* 0.0298
BAR 0.0028 0.0028 0.0022 0.0034 0.0039 0.0035
COMP 0.0007 0.0007 0.0012 0.0009 −0.0004 0.0009
HOT −0.0002 0.0005 0.0002 0.0006 0.0003 0.0005
PARK −0.0133 0.0632 −0.0286 0.0724 −0.0143 0.0638
BUS −0.0182 0.0128 −0.0123 0.0167 0.0002 0.0161
TRAM −0.0962 0.0754 −0.2074* 0.1079 −0.1248 0.1088
BETW −0.0001 0.0001 0.0000 0.0001 0.0000 0.0000
INT −0.0126 0.0178 −0.0052 0.0125 −0.0126 0.0085
YP −0.0452 0.0485 0.0329* 0.0193 0.0226 0.0142
OP 0.0207 0.0145 0.0138* 0.0074 0.0010 0.0043
HP 0.2806* 0.1284 0.2234* 0.0604 0.1994* 0.0471
ψ 3.2962* 0.4602 2.3784* 0.2386 7.0513* 2.1572

* An asterisk indicates the significance of a parameter with a 90% credibility.

Table 8
Estimates with standard deviation (SD) for the parameters involved in the CAR model, considering HEXAs as BSUs.

Covariate AG100 AG200 AG300 AG400 AG500

Est. SD Est. SD Est. SD Est. SD Est. SD

Intercept −8.8001* 1.3441 −4.8880* 0.7877 −5.2212* 0.6348 −4.3829* 0.4955 −5.1725* 0.3578
EDU −0.0457 0.0396 −0.0470 0.0299 −0.0759* 0.0311 −0.0814* 0.0339 −0.0435 0.0334
BAR 0.0001 0.0035 −0.0026 0.0030 −0.0010 0.0037 −0.0008 0.0038 0.0012 0.0036
COMP −0.0011 0.0010 −0.0002 0.0009 −0.0001 0.0009 0.0011 0.0011 0.0011 0.0010
HOT 0.0004 0.0006 0.0004 0.0007 0.0002 0.0006 0.0006 0.0006 0.0005 0.0006
PARK 0.1677 0.1075 0.0371 0.0781 0.0741 0.0796 0.0406 0.0805 0.0068 0.0766
BUS 0.0267 0.0231 0.0816* 0.0204 0.0902* 0.0212 0.0934* 0.0229 0.1336* 0.0222
TRAM −0.1348 0.1352 0.1095 0.1633 −0.0518 0.1356 −0.0057 0.1233 0.0244 0.1290
BETW 0.0001 0.0002 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0000
INT 0.0908* 0.0409 0.0151 0.0199 0.0097 0.0153 0.0021 0.0102 −0.0012 0.0090
YP 0.0455 0.0397 0.0036 0.0261 0.0079 0.0126 0.0175 0.0121 0.0021 0.0095
OP −0.0199* 0.0103 −0.0127* 0.0075 −0.0096* 0.0056 −0.0038 0.0047 −0.0033 0.0037
HP 0.3438* 0.0971 0.0395 0.0520 0.0703 0.0464 −0.0055 0.0347 0.0480* 0.0274
ψ 1.4053* 0.1862 1133.6054* 9922.7680 205.1350* 579.7774 79.1317* 100.2495 103.7747* 162.6996

* An asterisk indicates the significance of a parameter with a 90% credibility.
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sometimes to explain certain model parameter disagreements that arise
from a change in aggregation level or BSU configuration.

The comparative analysis yielded that CAR models using hexagonal
gridded units (HEXAs) were the best choice according to the perfor-
mance measurements adopted. The employment of BSU types based on
the road network being analysed (TMs and TIs), which naturally
avoided boundary effects (although HEXAs even outperformed them in

this aspect), did not lead to better model performances. Anyhow, model
performance measures should not be the only instrument to select one
combination of scale and zoning over others. Indeed, the use of CAR
models and HEXAs also unveiled controversial behaviours for some
model parameter estimates. These were found to be a consequence of
the fact of using a BSU type (hexagonal unit) that may not be the best
one to represent demographic characteristics of the area of

Fig. 11. Estimated local parameters for the GWR model considering CTs, TMs, TIs and HEXAs for EDU (a–d), BAR (e–h) and BUS (i–l) at AG300. Districts of Valencia
are overlayed (thicker lines, in black) for better readability and comparison.

Fig. 12. Crash counts (a–c) and COMP values (d–f) for CTs at AG100, AG300 and AG500 (in order of appearance at each row, from more to less aggregated). Some
central Districts of Valencia are highlighted in blue. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
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investigation. Thus, even though the results for census tracts were more
modest in terms of model performance, this kind of administrative unit
is possibly the most suitable one to seek more robust conclusions if
several demographic covariates are present.

The analysis of the MAUP presented in this paper has also empha-
sized how the changes in scale or zoning alter the typology of the re-
sponse and predictor variables that are eventually provided as the input
to a statistical model. Specifically, higher aggregation levels associated
with a reduction in overdispersion and kurtosis. This result suggests
that the choice of a modelling approach once a change in scale or
zoning has been produced should be well addressed, implying the re-
consideration or even rejection of a previously selected approach.
Furthermore, higher levels of spatial aggregation yielded an overall
increase of variance inflation factors, a sign of multicollinearity risk

that leads to the conclusion that an excessive aggregation of the data
should be avoided, or at least properly checked. The spatial nature of
some of the covariates has also provided some clues on their sensitivity
towards MAUP. Indeed, covariates having low levels of spatial auto-
correlation or generated from point patterns not extremely clustered
have displayed a more coherent behaviour among scales and zonings.
However, this issue requires a deeper investigation.

Moreover, some limitations of this paper deserve some comment.
First, it is worth noting that selecting a proper exposure measure is
essential to avoid bias in parameter estimations. Indeed, the lack of
consideration of a exposure measure could have a greater impact on
statistical estimations than a variation in scale or zoning. Due to the
unavailability of traffic volume, we used non-pedestrian road length as
a proxy for exposure, but we may be missing some important

Fig. 13. Crash counts for CTs (a–c) and HEXAs (d–f) and OP values for CTs (g–i) and HEXAs (j–l) at AG100, AG200 and AG300 (in order of appearance at each row,
from more to less aggregated). A CT in the South of Valencia is highlighted in blue. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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information. Second, the choice of certain homogeneity criteria to carry
out the regionalization process may be another factor, other than scale
and zoning, that affects model fitting. In this paper, homogeneity cri-
teria were solely based on crash counts. Other factors, such as land use
and socio-economic characteristics, should also be considered in future
studies.

To conclude, this paper has provided more evidence regarding the
complications that the MAUP can create in the context of a spatial
traffic safety analysis. The performance of sensitivity analyses sug-
gested by Xu et al. (2018) considering model estimates for several scales
or zonings (or both) seems unavoidable, but this kind of analysis should
also include the investigation of the “intermediate” factors that affect
statistical inference such as the modelling approach, the multi-
collinearity shown by the covariates and their spatial autocorrelation.
The consideration of all of these factors should help researchers to
achieve firmer conclusions, although one cannot forget that it is still
likely that the MAUP will never be solved (Manley, 2014).
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